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We demonstrate that the information contained in the spike occurrence
times of a population of neurons can be broken up into a series of terms,
each re�ecting something about potential coding mechanisms. This is
possible in the coding regime in which few spikes are emitted in the
relevant time window. This approach allows us to study the additional
information contributed by spike timing beyond that present in the spike
counts and to examine the contributions to the whole information of dif-
ferent statistical properties of spike trains, such as �ring rates and corre-
lation functions. It thus forms the basis for a new quantitative procedure
for analyzing simultaneous multiple neuron recordings and provides
theoretical constraints on neural coding strategies. We �nd a transition
between two coding regimes, depending on the size of the relevant ob-
servation timescale. For time windows shorter than the timescale of the
stimulus-induced response �uctuations, there exists a spike count coding
phase, in which the purely temporal information is of third order in time.
For time windows much longer than the characteristic timescale, there
can be additional timing information of �rst order, leading to a temporal
coding phase in which timing information may affect the instantaneous
information rate.

In this new framework, we study the relative contributions of the dy-
namic �ring rate and correlation variables to the full temporal informa-
tion, the interaction of signal and noise correlations in temporal coding,
synergy between spikes and between cells, and the effect of refractori-
ness. We illustrate the utility of the technique by analyzing a few cells
from the rat barrel cortex.

1 Introduction

At the most fundamental level, information about sensory stimulation is
represented in the central nervous system by the spike emission times of
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populations of neurons. In principle, the temporal pattern of spikes across
the neuronal population provides a large capacity for fast information trans-
mission (MacKay & McCulloch, 1952). It is still unclear how much of this
theoretical capacity is actually exploited by the brain.

It has long been known that a substantial amount of sensory informa-
tion is carried by the discharge rate of individual neurons (Adrian, 1926). In
some circumstances, however, if the stimulus is modulated on a very short
timescale, precisely replicable sequences of spikes can be obtained (Bair &
Koch, 1996; Buracas, Zador, DeWeese, & Albright, 1998). Does this repre-
sent temporal coding, or is the relevant time window for counting spikes
merely very short? Recent analyses have also suggested that temporally
coded information is present in the spike trains of individual neurons in the
monkey visual cortex under more general stimulation conditions (Victor &
Purpura, 1996, 1998; Mechler, Victor, Purpura, & Shapley, 1998). Evidence
has also accrued that some information appears to be encoded by stimulus-
(or behavior-) related changes in the coordination of timing of �ring be-
tween small populations of cortical cells (Vaadia et al., 1995; deCharms &
Merzenich, 1996; Riehle, Grun, Diesmann, & Aertsen, 1997). Given that our
understanding of how spike trains are decoded biophysically is far from
complete, the rigorous study of the information properties of nerve cells
requires that we can quantify spike train information in full generality. Un-
derstanding neural coding then means understanding how the different fea-
tures of the population of spike trains (such as spike counts, correlations, or
patterns) contribute to the full temporal information. This provides a pow-
erful constraint on the biophysical decoding that occurs. For instance, if no
signi�cant information about a stimulus is present in feature X of the spike
trains, then none can be decoded by recipient neuronal pools by using “X
detection.”

To study these questions, it is of interest to quantify information using
a rigorous measure such as mutual information (Shannon, 1948; Cover &
Thomas, 1991). In this context, Shannon mutual information measures the
extent to which observing a spike train (or a number of spike trains from sev-
eral cells) reduces the uncertainty as to which external stimulus was present;
it provides a bound on well the stimuli can be discriminated. Equivalently, it
measures the �delity of coding on a trial-by-trial basis—how reproducibly
the responses on individual trials represent the stimulus. If the spike times
are observed with �nite temporal precision D t, and if D t is small enough
such that all timing �uctuations below that timescale are not in�uenced by
stimulation, then a binary string can be formed (with bin width D t) that
contains all of the information present in the spike train. Direct estimation
of the full temporal information is in principle possible by measuring the
frequency of occurrence of all possible patterns of ones and zeros (“words”)
that the string can take from the experimental data (Strong, Koberle, de
Ruyter van Steveninck, & Bialek, 1998; de Ruyter van Steveninck, Lewen,
Strong, Koberle, & Bialek, 1997). A direct approach is particularly useful
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because it does not make any assumptions about what are the important
aspects of the spike train and is thus completely general. However, direct
estimation by “brute force” estimation of frequencies is problematic because
of the large data sizes required (growing exponentially with word length).
Despite this limitation, a recent study has succeeded in directly quantifying
full temporal information from an alert animal, in part because of the low
spiking rates obtained under the stimulation conditions used (Buracas et
al., 1998).

Another approach to direct calculation of the information is to expand
the mutual information as a Taylor series in the experimental time win-
dow (Bialek, Rieke, de Ruyter van Steveninck, & Warland, 1991; Skaggs,
McNaughton, Gothard, & Markus, 1993; Panzeri, Biella, Rolls, Skaggs, &
Treves, 1996; Panzeri, Schultz, Treves, & Rolls, 1999). This is the approach
taken here. In this article we extend previous work based on the spike count
response for a small population of cells (Panzeri et al., 1999) to present for
the �rst time an analytical expression for the full temporal information in a
population of spike trains to second order in the time window. This enables a
natural separation of the contributions of both instantaneous �ring rates and
temporal correlations between spikes to the complete information. It also al-
lows comparison with the information carried by the number of spikes �red
by each cell, which can be expressed in an equivalent form. This provides
theoretical insight into the individual factors that determine the coding ca-
pabilities of neural spike trains. It also provides a procedure for neurophysi-
ological data analysis that is superior with respect to data size requirements
compared to brute force frequency estimation of the information.

The use of such a Taylor series approach requires that the experimental
time window (which should not be confused with the smaller bin width
used to discretize the spike train) be short enough that only a few spikes are
emitted in its duration. This short time window limit, although a restriction,
is relevant to the transmission of sensory information in the mammalian cor-
tex. Single-unit recording studies in primates have demonstrated that the
majority of information about static visual stimuli is often transmitted in
windows as short as 20 to 50 ms (Tov Âee, Rolls, Treves, & Bellis, 1993; Heller,
Hertz, Kjaer, & Richmond, 1995; Rolls, Tov Âee, & Panzeri, 1999). Informa-
tion about time-dependent signals is often conveyed by single sensory cells
by producing about one spike per characteristic time of stimulus variation
(Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1996). Event-related
potential studies of the human visual system (Thorpe, Fize, & Marlot, 1996)
provide further evidence that the processing of information in a multiple-
stage neural system can be extremely rapid. The periods during which tran-
scranial magnetic stimulation disrupts processing in early visual cortex have
been found to be as short as 40 ms (Corthout, Uttl, Walsh, Hallett, & Cowey,
1999). Finally, the assessment of the information content of interacting as-
semblies, which may last for only a few tens of milliseconds (Singer et al.,
1997), requires the use of such short windows.
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The article is organized as follows. In section 2, the problem is de�ned,
and the series expansion of the information is explained. In section 3, the
necessary rate and correlation parameters are introduced, and the proba-
bilities of each possible response expressed in terms of these parameters.
Section 4 gives the main result of the article: the analytical expression ob-
tained by substituting these probabilities back into the equation for mutual
information. In section 5, we examine the conditions under which this ap-
proach is valid. Section 6 uses these results to study the role of response
timescales in neural coding; two distinct coding regimes are found, de-
pending on the relative stimulus and response characteristic timescales.
Temporal encoding may contribute signi�cantly when the mean instanta-
neous �ring rates of the cells �uctuate on a timescale shorter than the time
window in which most of the information about the stimulus is transmit-
ted. Section 7 examines the precision with which spike times may code
information. In section 8, we study the conditions under which one �nds
synergistic relationships between spikes and between cells in an assem-
bly. This includes an analysis of the effect of a refractory period on the
spike train information. In section 9, we illustrate the method by apply-
ing it to spike trains recorded in the rat barrel cortex. Finally, in section 10,
we discuss the consequences of the results and their relationship to other
work.

2 The Information Carried by Neural Spike Trains

Consider a time period of duration T, associated with a dynamic or static
sensory stimulus, during which we observe the activity of C cells. This pe-
riod of physiological observation has associated with it a period (which
might be earlier by some “lag” time, but which we will consider to have
the same length) in which we also observe the characteristics of an external
correlate, such as a sensory stimulus, which might be in�uencing the cells’
behavior. Let us denote each different stimulus history (time course of char-
acteristics within T) as s(t ), a function of time from stimulus onset chosen
from the set S of experimentally presented stimulus histories. We shall de-
scribe the neuronal population response to the stimulus by the collection of
spike arrival times fta

i g, each ta
i being the time of occurrence of the ith spike

emitted by the ath neuron.
Although the spike arrival time is a continuous variable, it can be ex-

perimentally measured only with �nite precision D t. Let us divide the time
window T into small bins of width D t (in which at most one spike per cell is
observed). With complete generality, we can represent the spike sequence
fta

i g as a sequence of binary digits, one for each time bin and cell, with the re-
sponse 1 in the bins corresponding to the spike times and 0 in all other bins.
We denote the probability of observing a spike sequence fta

i g when a particu-
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lar stimulus history s(t ) was present as P(fta
i g|s(t )).1 P(fta

i g) D hP(fta
i g|s(t ))is

is its average across all stimulus histories. We determine P(fta
i g|s(t )) by re-

peating each stimulus history in exactly the same way on many trials and
observing the responses.

Following Shannon (1948), we can write down the mutual information
provided by the spike trains about the whole set of stimuli as

I(fta
i gIS ) D

Z
Ds p[s(t )]

Z
Dta

i p
£
fta

i g|s(t )
¤

log2
p

£
fta

i g|s(t )
¤

p(fta
i g)

´
X

s(t )2S
P[s(t )]

X

ta
i

P
£
fta

i g|s(t )
¤

log2
P

£
fta

i g|s(t )
¤

P(fta
i g)

. (2.1)

This notation can be read as follows. In the �rst, more general form of the
equation, we use the functional integral notation

R
Ds to indicate that in

principle, a continuous set of stimulus histories can be created. In practice,
a discrete and often very limited set of stimuli is usually used to test the cell;
hence, we replace the functional integral with a summation over a discrete
set of stimuli. For brevity, the t will henceforth be dropped unless there is
a particular need to stress the dynamic nature of the stimulus function. The
notation

R
Dta

i indicates integration over all spike times ta
i , i D 1 . . . na, a D

1 . . . C, and summation over all total spike counts from the population. na
is the number of spikes emitted by cell a. This notation is very similar to
that used in Rieke et al. (1996). In the limit of in�nite precision,

R
Dta

i may
be interpreted as a simple Riemannian integral; the results we present in
this article are valid in this continuous limit. More usually we will invoke
�nite precision D t and interpret the integral as a summation over all time
bins.

In addition to studying the information contained in the sequence of
spike times, we can also quantify the information contained in the response
space de�ned by only the number of spikes emitted by each cell in the time
window. We can form a C-dimensional vector n, each component of which is
na, the number of spikes �red by the respective neuron in the experimental
time window. The spike count information can be written

I(nI S ) D
X

s2S
P(s)

X

n

P(n |s) log2
P(n |s)
P(n)

. (2.2)

This information quantity is exactly that calculated in Panzeri et al. (1999).
Invoking thedata processing inequality, it is relativelyobvious that I(nI S ) ·
I(fta

i gI S ).

1 We use P(¢) to indicate a probability and p(¢) a probability density.
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Now, the spike train information can be approximated by a power series,

I(fta
i gI S ) D It(fta

i gIS ) T C Itt(fta
i gI S )

T2

2
C ¢ ¢ ¢ , (2.3)

where It(¢) and Itt(¢) refer to the �rst and second time derivatives of the
information, respectively. As we shall see, this becomes effectively an ex-
pansion in a dimensionless quantity—the number of spikes �red in the time
window. For this approximation to be valid, the information function must
be analytic in T, and the series must converge within a few terms. Both of
these issues will be addressed in section 5. The time derivatives of the in-
formation can be calculated by taking advantage of the narrowness of the
time windows, as will be explained.

3 Correlation Functions and Response Probability

Before specifying the expressions for the response probabilities, it is neces-
sary to de�ne some response parameters. Consider �rst the discrete time
resolution case (�nite D t). For each individual trial with stimulus s, the spike
train density of each cell can be represented as a sum of pulses,

ra(tI s) D
X

i

dt,ta
i

D t
, (3.1)

where dt1 ,t2 is the Kronecker delta function (1 if t1 and t2 label the same time
bin, and zero otherwise). i in the above indexes the spike number. The time-
dependent �ring rate is measured as the average of this quantity over all
experimental trials with the same stimulus s. We denote this trial average
by a bar, and the �ring rate is thus ra(tI s). Note that this mean rate function
is sometimes called the poststimulus time histogram.

It isalso necessary to introduce parameters describingcorrelations among
spikes. (Note that we use the word correlation for both autocorrelation and
cross-correlation.) Now, it is apparent that for physically plausible pro-
cesses, r will remain constant as D t ! 0. If the mean �ring rate is a dif-
ferentiable function of time, then for suf�ciently short bin widths, reduc-
ing D t will just reduce the probability of observing a spike accordingly. We
would like to retain this property for our correlation measure as well, so that
when we write out the series expansion of the information equation, there
will not be any dependence on time hidden inside the response parameters.
Such hidden dependence would prevent a simple intuition of the depen-
dence of the relative magnitudes of the information terms on the timescale
and would, we believe, be inelegant. The Pearson product moment, for in-
stance, can be shown to approach zero for short time windows (Panzeri et
al., 1999). The measure we choose is the scaled correlation density. We can
write the scaled noise correlation density, which measures correlations in
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the response variability upon repeated trials of the same stimulus,2 as

c ab(ta
i , tb

j I s) D
ra(ta

i I s)rb(tb
j I s)

ra(ta
i I s)rb(tb

j I s)
¡ 1, if a 6D b or ta

i 6D tb
j

c aa(ta
i , ta

i I s) D ¡1. (3.2)

The numerator of the �rst term indicates the average, over trials in which the
same stimulus s is presented, of the product of the spike densities of cell a at
time ta

i and cell b at time tb
j . Note that the scaled correlation density is simply

a joint poststimulus time histogram from which the number of coincidences
purely due to rate modulation has been subtracted (implemented by the ¡1
in equation 3.2).

Now we can introduce the above correlation parameters in terms of the
conditional �ring probabilities of observing one spike from cell a in the time
bin centered at ta

i , given that cell b emitted a spike in the time bin centered
at tb

j , when stimulus s was presented:

P(ta
i |tb

j I s) ´ ra(ta
i I s) D t[1 C c ab(ta

i , tb
j I s)] C O(D t2). (3.3)

This assumes that the conditional probabilities (see equation 3.3) scale pro-
portionally to D t. It is a natural assumption because it merely implies that
the probability of observing a spike in a time bin is proportional to the res-
olution D t of the measurement. It is violated only in the implausible and
nonphysical case of spikes locked to one another with in�nite time preci-
sion. It can, of course, be checked for any given data set; this will be carried
out in section 5. Note that quadratic- (and higher-) order terms in D t were
neglected from the above relationship as they affect only third- and higher-
order terms of the information.

We will �nd it convenient to measure another type of correlation also:
signal correlation, that is, correlation in the mean responses of the neurons
across the set of stimuli. These correlations can also be thought of as corre-
lations in the tuning curves of the neurons. For homogeneity, we will also
quantify these by a scaled correlation density:

ºab(ta
i , tb

j ) D

D
ra(ta

i I s)rb(tb
j I s)

E

s«
ra(ta

i I s)
¬
s

D
rb(tb

j I s)
E

s

¡ 1. (3.4)

In equation 3.4, the brackets h¢is can be taken to indicate the average across
stimuli,

R
Ds p(s)¢ or

P
s P(s)¢. Both c and º may range from ¡1 to 1, with

zero indicating lack of correlation.

2 We adopt the convention, used by a number of authors, of using the term noise
correlation to mean correlation at �xed signal, thus distinguishing it from correlation across
different signals, a concept we also require.
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When passing to the high-resolution limit (D t ! 0), the same de�nitions
outlined above apply, provided that we replace the Kronecker delta function
with that of Dirac in the de�nition of spike density,

ra(tI s) D
X

i
d(t ¡ ta

i ), (3.5)

and use probability densities instead of probabilities in equation 3.3.
Let us now consider the case of the spike count response parameters. The

correlational parameters that in�uence the spike count information are the
scaled correlation coef�cients of the spike counts in each trial (Panzeri et al.,
1999). These are obtained by summation over time bins (or integration in
the high-resolution limit) of the above expressions. The spike count scaled
noise correlation coef�cient can be written as

c ab(s) D

R
dta

i
R

dtb
j ra(ta

i I s)rb(tb
j I s)[1 C c ab(ta

i , tb
j , s)]

[
R

dta
i ra(ta

i I s)][
R

dtb
j rb(tb

j I s)]
¡ 1. (3.6)

Similarly, signal correlation is quanti�ed as

ºab D

DR
dta

i ra(ta
i I s)

R
dtb

j rb(tb
j I s)

E

s«R
dta

i ra(ta
i I s)

¬
s

DR
dtb

j rb(tb
j I s)

E

s

¡ 1. (3.7)

Equations 3.6 and 3.7 are a simple renotation of the de�nitions in Panzeri
et al. (1999) to �t with the requirements of the full temporal notation in this
article. The �nite resolution expressions for the above are of course obtained
by replacing the integrals with summations:

lim
D t!0

X

n
f (tn)D t D

Z
dtf (t). (3.8)

If the conditional instantaneous �ring rates are nondivergent, as assumed
in equation 3.3, then the short timescale expansion of response probabili-
ties becomes essentially an expansion in the total number of spikes emitted
by the population in response to a stimulus. The only responses that con-
tribute to the transmitted information up to order k are those with up to k
spikes from the population. This is proved in appendix A. The only rele-
vant events for the second-order analysis are therefore those with no more
than two spikes emitted in total, and they can be truncated at second order
without affecting the �rst two information derivatives. This is valid for any
time resolution. For brevity, we report the results only for the in�nite time
resolution case. The resulting expression (see appendix A) is

P(0|s) D 1 ¡
CX

aD1

Z
dta

1ra(ta
1I s)
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C
1
2

CX

aD1

CX

bD1

Z
dta

1

Z
dtb

2ra(ta
1I s)rb(tb

2I s)
h
1 C c ab(ta

1, tb
2I s)

i

p(ta
1 |s)dta

1 D ra(ta
1I s)dta

1

³
1 ¡

CX

bD1

Z
dtb

2rb(tb
2I s)

h
1 C c ab(ta

1, tb
2I s)

i´

a D 1, ¢ ¢ ¢ , C

p(ta
1tb

2 |s)dta
1dtb

2 D
1
2

ra(ta
1I s)rb(tb

2I s)
h
1 C c ab(ta

1, tb
2I s)

i
dta

1dtb
2

a, b D 1, ¢ ¢ ¢ , C, (3.9)

where P(0|s) is the probability of zero response (no cells �re), p(ta
1 |s) is the

probability density of observing just one spike from cell a at the speci�ed
time location, and p(ta

1tb
2 |s) is the probability density of observing just a pair

of spikes at the given times.

4 Analytical Results

We now insert the second-order response probabilities (see equation 3.9)
into the expressions for the information contained in the sequence of spike
times (see equation 2.1) and the spike counts (see equation 2.2). Then, for
each term in the sum over responses, we use the power expansion of the
logarithm as a function of T

log2(1 ¡ T x) D ¡ 1
ln 2

1X

jD1

(Tx) j

j
, (4.1)

and, after integrating over spike times, group together all terms in the sum
that have the same power of T. Equating these with equation 2.3 yields
expressions for the information derivatives. These expressions depend only
on the time-dependent �ring rates r, the noise correlations c , and the signal
correlations º. As shown in appendix A, the power expansion in the short
time window length T is related to the expansion in the total number of
spikes emitted by the population. Therefore, although the formalism is for
simplicity developed as an expansion in T, the expansion parameter is in
fact the adimensional quantity representing the average number of spikes
emitted by the population in the window T.

The �rst-order contribution (T times the instantaneous information rate)
to the full temporal information from a population of spike trains is (Bialek
et al., 1991)

It(fta
i gIS ) T D

CX

aD1

Z
dta

½
ra(taI s) log2

ra(taI s)
hra(taI s0 )is0

¾

s
. (4.2)

This is simply a sum of single-cell contributions. It is insensitive to both
signal and noise correlation.
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The expression for the second-order contribution (the second temporal
derivative multiplied by T2/2) breaks up into three terms:

Itt(fta
i gI S )

T2

2
D

1
2 ln 2

CX

aD1

CX

bD1

Z
dta

1

Z
dtb

2
«
ra(ta

1I s)
¬
s

D
rb(tb

2I s)
E

s

£
(

ºab(ta
1, tb

2) C
h
1 C ºab(ta

1, tb
2)

i
ln

1

1 C ºab(ta
1, tb

2)

)

C
1
2

CX

aD1

CX

bD1

Z
dta

1

Z
dtb

2

D
ra(ta

1I s)rb(tb
2I s)c ab(ta

1, tb
2I s)

E

s

£ log2
1

1 C ºab(ta
1, tb

2)

C
1
2

CX

aD1

CX

bD1

Z
dta

1

Z
dtb

2

*
ra(ta

1I s)rb(tb
2I s)

h
1 C c ab(ta

1, tb
2I s)

i

£ log2

8
>>><

>>>:

«
ra(ta

1I s0 )rb(tb
2I s0 )

¬
s0

£
£
1 C c ab(ta

1, tb
2I s)

¤
«
ra(ta

1I s0 )rb(tb
2I s0 )

£
£
1 C c ab(ta

1, tb
2I s0 )

¤¬
s0

9
>>>=

>>>;

+

s

. (4.3)

We will refer to these terms as components 2a, 2b, and 2c of the information,
respectively.

When each spike is completely independent, as in a Poisson process, it is
apparent that only the �rst term of equation 4.3 survives. It is easy to see that
this term is always less than or equal to zero, since f (x) D x¡ (1 C x) ln(1 C x)
has a global maximum at f (0) D 0: the �rst term is equal to zero only
if the signal correlation is precisely zero. This means that the information
accumulation from a Poisson process with |º| > 0 always slows down after
the �rst spike.

If there is any deviation from independence in the timing of succes-
sive spikes, then the other terms can contribute to the information through
nonzero autocorrelation density c aa(ta

1, tb
2). If there is any relationship be-

tween the times of spike emission of different cells, then they can contribute
through nonzero cross-correlation c ab(ta

1, tb
2). As with the spike count infor-

mation terms detailed in Panzeri et al. (1999), the second of these terms
(the stimulus-independent correlational component) re�ects contributions
from a level of correlation that is not stimulus dependent. The third term
is nonnegative and is nonzero only in the presence of stimulus dependence
of the correlation between spikes; it is called the stimulus-dependent cor-
relational component. The natural separation of the second-order informa-
tion into three components is important because each component re�ects
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the contribution of a different relevant encoding mechanism. When apply-
ing this analysis to real neuronal data, a signi�cant amount of information
found in the third component of Itt, relative to the total information, would
clearly signal that cells are transmitting information mainly by participating
in a stimulus- (or context-) dependent correlational assembly (Singer et al.,
1997). A speci�c example will be given in Figure 5.

In the same way, the short timescale expansion can be carried out for the
spikecount information.This was performed indetail inPanzeri et al. (1999),
and here we report brie�y the main results to cast them into identical nota-
tion to that above for comparison. The spike count information derivatives
are similar to equation 4.3, but they depend only on the mean rate across
time and on the spike count correlation coef�cients (see equations 3.6 and
3.7). The �rst-order contribution is:

It(nI S ) T D
CX

aD1

*Z
dtara(taI s) log2

R
dtara(taI s)

«R
dtara(taI s0 )

¬
s0

+

s

. (4.4)

As before, the second-order contribution is broken into three compo-
nents:

Itt(nI S )
T2

2

D
1

2 ln 2

CX

aD1

CX

bD1

½ Z
dta

1ra(ta
1I s)

¾

s

½ Z
dtb

2rb(tb
2I s)

¾

s

£
µ
ºab C (1 C ºab) ln

1
1 C ºab

¶

C
1
2

CX

aD1

CX

bD1

½ ³Z
dta

1ra(ta
1I s)

´ ³Z
dtb

2rb(tb
2I s)

´
c ab(s)

¾

s
log2

1
1 C ºab

C
1
2

CX

aD1

CX

bD1

½ ³Z
dta

1ra(ta
1I s)

´ ³Z
dtb
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5 Limitations

In this section we address the potential limitations of the technique pre-
sented here as a procedure for the analysis of real data. There are four
assumptions that must be satis�ed for the series approximation to be guar-
anteed to be a good estimate of the true information: (1) that the experimen-
tal time window is small, (2) that the conditional �ring probability scales
with D t, (3) that the information is an analytic function of time, and (4) that
experimental trials are statistically indistinguishable.
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5.1 Assumption 1. The short timescale limit used here formally requires
that the mean number of spikes in the time window be small. The actual
range of validity of the order T2 approximation will depend on how well
the time dependence of the information from the neuronal population �ts
a quadratic approximation. The range of validity for the spike count series
information was checked by simulation in Panzeri et al. (1999). The same
range of validity must hold for the temporal information as well when
the �ring rates and correlations of the neurons vary slowly with respect
to the time window considered, since in this limit the additional temporal
information is small (see the next section). The additional numerical test
required here is therefore on the range of applicability of the second-order
approximation for the full spike timing information when the parameters
describing the neuronal �ring probabilities �uctuate quite rapidly within
the time window T.

For this purpose we simulated neurons driven by two stimuli. The re-
sponse of each neuron to each stimulus was modeled as a 1 ms resolution
Poisson process with a time-dependent �ring rate (the response in each 1
ms time bin is generated with a time-dependent �ring rate independent of
the response in the other time bins). The �rst stimulus gave a constant (�at)
mean response r0 D 30 spikes per second. across time, whereas the second
stimulus was chosen to produce a response of mean r0 and sinusoidally
modulated with amplitude r0, at a frequency 1/tc. After a full period, the
two stimuli are indistinguishable on the basis of spike count alone, and
therefore this is a good model for examining temporal coding.

The analytical approximations to the information were tested against the
true information computed directly from the model response probabilities.
Figure 1 shows the accuracy of the �rst- and second-order approximations
to the information in the spike times for a single cell with responses to the
second stimulus oscillating very fast (at a frequency of 500 Hz). The second-
order approximation is nearly exact up to 200 ms, even in the extreme case
of such fast �uctuations. The range of validity seems not to be signi�cantly
affected by changing the frequency of oscillations. We have also carried out
simulations with a set of two cells with either Poisson or cross-correlated
�ring. When simulating two cells, we could not systematically test time
windows as long as 200 ms because the number of spike trains over which
we have to sum to compute the full information increases exponentially
with both the length of the window and the population size. However, we
found that the scaling expectation that the range of validity shrinks as 1/C
with population size is con�rmed up to the time window lengths that we
could test.

The simulations presented here therefore show that the series expansion
can be useful for timescales relevant to neuronal coding, for the small en-
sembles of cells typically recorded during in vivo experimental sessions. In
particular, when correlations between spikes are weak, the series expansion
is very precise up to hundreds of ms. However, the presence of very strong
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Figure 1: Accuracy of the �rst- and second-order approximations to the full in-
formation in the spike times of a single cell with Poisson responses to two stim-
uli. The cell responded to stimulus 1 with a constant (in time) rate of 30 spikes
per second and to stimulus 2 with a spike rate oscillating sinusoidally around
30 spikes per second with period 2 ms and amplitude 30 spikes per second.

correlations between the spikes can potentially reduce this range of validity.
Therefore, the actual range of validity for the data under analysis should
be further assessed, for example, by looking at the agreement between the
series expansion result for spike counts and the brute force evaluation of
the spike count information from response probabilities (see equation 2.2).
(The latter, unlike the brute force full temporal information, can usually be
computed with an experimentally feasible number of trials.) An example of
this check is given in section 9.

5.2 Assumption 2. The second assumption required is that the proba-
bility of observing a spike in the time bin centered on ta

i from cell a given that
one has been observed in the time bin centered on tb

j from cell b scales with
D t. This is captured by equation 3.3. This assumption would be expected to
break down only if there were a signi�cant number of spikes synchronized
with near-in�nite precision.

To illustrate how this scaling assumption can be validated experimen-
tally,we examinedthe scaling relationbetween theaveragevalueofP(ta

i |tb
j Is)

and D t for two neurons recorded from the rat barrel cortex. The stimuli
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Figure 2: Scaling relationship between the average conditional �ring rate (com-
puted as the average probability of observing a spike at one time, given that a
spike has been observed at another time, divided by the bin width D t) and the
bin width of observation. The relationship is shown for two cells from the rat
barrel cortex.

were upward de�ections of one of nine whiskers. (These data were pro-
vided by M. E. Diamond and colleagues. For further reference to the data,
see Lebedev, Mirabella, Erchova, & Diamond, 2000, and section 9, where
the information properties of the same two cells are analyzed with our
method.) The result can be seen in Figure 2. We found that the averaged
conditional �ring rate, computed as the average across all bin pairs and
stimuli of P(ta

i |tb
j I s)/D t, remained approximately constant as D t was de-

creased, and no divergence of the conditional �ring rate was observed for
all the resolutions considered. This provides evidence that assumption 2
holds for this data set.

5.3 Assumption 3. This method expands the mutual information as a
Taylor series in T. Therefore, the third required assumption is that the infor-
mation is an analytic function of the time window size T. This requirement
ensures that the Taylor series expansion of the mutual information exists
and that the series converges to the mutual information.

The validity of this assumption can be tested, at least to some extent, on
the data set under analysis. For example, one can check that there are no dis-
continuities in time of the �ring parameters. Also, if there are enough data,
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the mutual information can be computed by brute force from the Shannon
formula, equation 2.1, although it can usually be computed only for a more
limited time range than when using the series expansion (see section 9).
Hence, the information computed by brute force from the Shannon formula
can be compared, in some time windows, to the series expansion estimation.
This provides a strong check of the validity of this particular assumption
and of the convergence of the series expansion method, as fully illustrated
in section 9. It is apparent that the assumption is valid for the data we exam-
ined here (see section 9). This assumption is more likely to cause problems
with arti�cially constructed models implementing instantaneous correla-
tions between neurons. One could argue that such models are nonphysical
in any case.

5.4 Assumption 4. The �nal assumption required is that experimental
trials are statistically indistinguishable. This assumption is, of course, inher-
ent in any neurophysiological data analysis and is taken to be the de�nition
of an experimental trial. Satisfaction of this assumption is the domain of
experimental design.

6 Response Timescales and Pure Temporal Coding

Having quanti�ed the information I(fta
i gIS ) in the spike times and I(nI S )

in the spike counts as a function of the rates and correlations, we are in a
position to study the conditions under which information is not dominated
by the spike counts. In other words, we ask, How much extra information,
not contained in the spike counts, is conveyed by the temporal relations
between spikes? This extra information is precisely I(fta

i gIS ) ¡ I(nI S ).
We �nd that the crucial parameter is the typical timescale of variation

of the �ring rate and correlation functions, relative to the time window
T of interest. We will label this typical or characteristic stimulus-induced
response timescale tc.

6.1 Case 1, large tc. . If the scale of time variation of any time-dependent
function f (t) is large compared to the time window considered, then f (t)
can be approximated by its power expansion, and the following quasi-static
approximation holds:

Z t0 CT/2

t0 ¡T/2
f (t)dt D f (t0) T C

@2

@t2 f (t)| tDt0

T3

24
C O(T5). (6.1)

As a consequence, if both rate and correlation functions vary slowly in the
time domain of interest, only the rate and correlation values near the center
of the interval (t0) are important, and the extra amount of information in
the spike times is subleading (only of order T3). The expression for the T3

term in the extra information in spike timing can be computed by applying
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equation 6.1) to the integrals over time involved in computing information
rates (see equations 4.2 and 4.4). The result depends on only the �ring-rate
variations near t0, and not on correlations between the spikes:

I(fta
i gI S ) ¡ I(nI S )

D
T3

24 ln 2

X

s
P(s)

@

@t
r(tI s)|tDt0

³
(@/@t)r(tI s)|tDt0

r(t0I s)
¡

h(@/@t)r(tI s0 )|tDt0 is0

hr(t0I s0 )is0

´
. (6.2)

Equation 6.2 can be shown to be nonnegative for any rate function, as re-
quired by information-theoretical consistency.

Being of order T3, in this regime, pure temporal coding affects neither
the rate nor acceleration of information transmission. Pure temporal infor-
mation would accumulate very slowly with time. Therefore, under these
circumstances, information is dominated by the spike counts.

6.2 Case 2, small tc. If either �ring rates or correlation functions �uc-
tuate with a characteristic timescale smaller than T, then the quasi-static
approximation, equation 6.1, breaks down, and there is a transition to a dif-
ferent coding regime. A possible case may be the presence of a sinusoidal
component of period shorter than T in the rate �uctuations. If in particular
tc is much shorter than T, the integral of the function over the time window
does not depend on the value of the function at the center of the interval as
in equation 6.1, or on the frequency of response variations, but only on the
average value of the function over the period tc:

Z t0 CT/2

t0¡T/2
f (t)dt D

µ
1
tc

Z

tc

f (t)dt
¶

T C O(T2). (6.3)

As a consequence, in this limit, the additional purely temporal informa-
tion is proportional to T (and not to T3, as in the quasi-static phase):

I(fta
i gI S ) ¡ I(nI S ) D

CX

aD1

Z
dta

½
ra(taI s) log2

ra(taI s)
hra(taI s0 )is0

¾

s

¡
CX

aD1

*Z
dtara(taI s) log2

R
dtara(taI s)«R

dtara(taI s0 )
¬
s0

+

s

C O(T2). (6.4)

This means that when rates �uctuate rapidly the actual rate of information
transmission (measured in bits per second) can be considerably faster than
that with spike counts only. Thus, in this phase, there can be substantial
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Figure 3: Comparison of the full temporal and spike count information. (a) Mod-
ulation of the �ring rates of a single nonhomogeneous Poisson neuron by two
stimuli. (b) Evolution of the full temporal and the spike count information as the
time window is increased in width from the �rst instance of stimulus-related
responses.

pure temporal information, and it may even be dominant with respect to
the spike count information.

We studied particular cases by simulating mean �ring-rate and correla-
tion parameters for each time-step as described in section 5. Two stimuli
were again used, one inducing a �at-rate response function and the second
a sinusoidally modulated function of time. The following results were ob-
tained with 1 ms time resolution, but have also been con�rmed by numerical
integration in the in�nite time resolution limit. The effect of timing precision
is considered separately. Figure 3 illustrates a situation in which the spike
count of a single cell responding according to a Poisson process is unable to
discriminate between the stimuli after a full period, but such information
is available from spike timing. The time window is increased, beginning
at the onset of stimulus-related responses. In this case, after 60 ms (a full
cycle of oscillation), the spike count information drops to zero, whereas the
full temporal information accumulates cycle after cycle. After one cycle, the
information is purely temporal.

The effect of stimulus modulation frequency on the full temporal in-
formation is shown in Figure 4a. Figure 4b shows the purely temporal
information for the same situation (the full information minus the spike
count information). The difference between the fast and slow regimes can
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Figure 5: A situation in which stimulus-dependent correlation in spike timing
between cells can make a sizable (but nevertheless second-order) contribution
to the total information, via component 2c of the temporal information. (See the
text for the correlation function used in this case.) In this example, the component
2c dominates the full temporal information. Note that the corresponding spike
count component was more than 10 times smaller over the whole time range.

be seen by comparing these two �gures. Slow �uctuations lead to negligible
(of order T3) pure temporal information. In the fast regime, pure temporal
information increases roughly proportionally to the window length. Note
also that if �uctuations are very fast (tc ¿ T) and the spike incidence is mea-
sured with high temporal precision, the amount of information is roughly
independent of the frequency of oscillation, as predicted by equation 6.3.

If the rates vary slowly with respect to T, but the correlations vary on
a faster timescale, then the pure timing information can be only of second
order in T. This means that in this situation, the instantaneous rate of in-
formation transmission is unaffected by the temporal structure of the spike
train. However, the temporal information can still be appreciable. An ex-
ample is shown in Figure 5. This �gure plots the information in the responses

Figure 4: Facing page. Effect of the frequency of stimulus modulation of the rates.
(a) Full temporal information. (b) Purely temporal information only. The main
requirement for temporal contribution to the information can be seen easily
in the comparison of these two �gures: fast �uctuation of the �ring rates in
comparison to the timescale of observation.
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of a pair of cells, each with the same characteristics as those in Figures 3 and
4. Both of the cells’ �ring rates are slowly (1 Hz) modulated by one stimu-
lus only. However, the correlation between them is modulated more rapidly,
with a frequency of 100 Hz, and it is stimulus dependent. The correlation for
one stimulus is equal in magnitude but opposite in sign to that of the other
stimulus. The correlation between the cells is modulated at f D 100 Hz ac-
cording toc ab(ta, tbI s) D § exp(¡|ta ¡tb | /l) sin(2p f ta) sin(2p f tb). The decay
constant l was chosen to be 25 ms. This particular cross-correlation function
was chosen to match the one used in Figure 7, but the result is indicative of
the behavior of any fast-oscillating cross-correlation. There is, as can be seen,
a substantial contribution to information component 2c, the third, stimulus-
dependent, component of the second-order information. This contribution
has no counterpart in the spike count information, which remains much
smaller.

7 Precision of Spike Timing

The total information contained in the spike times, equation 2.1, is also a
function of the precision D t with which the spikes are measured (or, equiv-
alently, of the precision in the spike timing itself). Experimental measures
of the information with different values of D t can address the question of to
what temporal precision information is transmitted in the cerebral cortex.
The whole question of whether spike timing is important is really a question
of whether the use of time resolution as short as a few milliseconds signif-
icantly increases the information extracted (Strong et al., 1998). Measuring
information at high resolutions with a brute force direct evaluation from
equation 2.1 is made dif�cult by the exponential increase of the number of
trials needed as D t is decreased (see Strong et al., 1998, and appendix B). Our
formalism gives a simple expression for the information in spike timing as
a function of the timing precision D t (the discrete version of equations 4.2
and 4.3), and requires only a quadratically increasing number of trials as
D t ! 0. Thus, it can be used to measure the information with resolutions
that would be impractical with brute force methods using data sets of the
size of typical cortical recording sessions (Panzeri & Treves, 1996).

As an example, Figure 6 illustrates the impact of sampling precision
on the full temporal information contained in 32 ms from a single-model
cell responding to two stimuli according to a Poisson process. The �rst
stimulus elicits a constant response �ring rate, and the second stimulus
elicits a response �ring rate oscillating sinusoidally in time, exactly as in
Figure 3. In Figure 6, the oscillation frequencies for the responses to the
second stimulus were varied in the range 5 to 250 Hz. The result is that the
timing precision has no effect on the information only if it is much smaller
than the typical timescale of response parameter variations tc. If D t ’ tc,
then information is strongly underestimated with respect to the in�nite
resolution limit.
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Figure 6: Effect of precision of spike timing on the information available from
32 ms of the response of a single simulated neuron. We used an absolute refrac-
tory period of 4 ms in this simulation (in order to have at most one spike per time
bin for all the precisions used). The data obtained with the continuous-time limit
(obtained by numerical integration) are included as the y-intercept information
values.

The issue of theef�ciencyof information transmission for different timing
precisions (how much of the total entropy is actually exploited for informa-
tion transmission) is addressed in Schultz and Panzeri (2000).

8 Synergy and Redundancy in Temporal Information

How is information combined from a group of coding elements? Is the
amount of information obtained from the whole pool of elements greater
than the sum of that from each individual element (synergistic) or less
than the sum (redundant)? Between these two cases, there can exist a sit-
uation where the information from each element is independent, and the
total information thus increases linearly as the number of elements is in-
creased. Two notions of “synergy” are of immediate relevance. The �rst
is synergy/redundancy between assemblies of cells; the second is synergy
between spikes (whether they are from the same cell or another).
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8.1 Synergy Between Cells. We de�ne the amount of synergy between
cells as the total information from theensembleofspike trains minus the sum
of that from the individual cells (Riekeet al., 1996). The redundancy is simply
the negative of this quantity. This means that to second order, the synergy
is simply the sum of the off-diagonal (a 6D b) elements of equation 4.3.
This is because the �rst-order terms (see equation 4.2) of the information
and the a D b terms in the summation are identical for both the ensemble
information and the sum of the individual cell informations, thus canceling
each other in the subtraction.

The amount of synergy between cells depends critically on correlation.
For synergistic coding, nonzero cross-correlation is needed. This can be seen
from equation 4.3. In the absence of correlation c , only the �rst term of Itt
would survive, and we have shown this term to be less than or equal to
zero, meaning that synergy cannot occur.

It is quite obvious that synergy may occur when the degree of correla-
tion between cells is modulated by the stimulus. However, even when noise
correlation is not stimulus dependent, it is possible to achieve synergistic
coding. This is done by using the second, stimulus-independent, correla-
tional component of Itt to increase the total information. This happens, for
each pair of cells, when the noise correlation c ab(ta

i , tb
j I s) is opposite in sign

to the signal correlation ºab(ta
i , tb

j ) for times ta
i , tb

j . This basic mechanism of
synergy for the temporal information is identical in principle to that consid-
ered for spikes counts in (Oram, Földi Âak, Perrett, & Sengpiel, 1998; Abbott
& Dayan, 1999; Panzeri et al., 1999); it extends naturally to noise and signal
correlations between time pairs ta

i and tb
j .

Correlations between cortical neurons often oscillate and vary rapidly
in sign with time (König, Engel, & Singer, 1995). Our analysis shows that
in this case, to obtain a maximally synergistic effect, the signal correlation
should oscillate in counterphase with respect to the cross-correlogram and
with similar frequency. This produces opposite signs of signal and noise cor-
relation. If the signal was of lower frequency, the effect of cross-correlation
would be washed away by its rapid change of sign with respect to the
signal. The effect of the relative frequencies and phase of signal and noise
variations with time is illustrated in Figure 7. We simulated two Poisson
cells, responding to two stimuli as in Figure 3a, but with the �ring rate in
response to the second stimulus being modulated at f1 D 10 and f2 D 20 Hz,

Figure 7: Facing page. Effect of the relative frequencies and phase of signal and
noise temporal variations in achieving synergistic coding. (a) Signal and noise
correlation oscillating with identical timescales. The line marked with the star
symbol indicates synergistic coding in this case, as it falls above the sum of
single cells’ information. (b) Noise correlation oscillating 10 times faster than
signal correlation.
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respectively. The signal correlation between the cells is in this simple case

º(ta, tb) / sin(2p f1ta) sin(2p f2tb). (8.1)

To generate a cross-correlation model that could be tuned to match the signal
correlation frequency, the cross-correlation was chosen for both stimuli to
be of the form

c ab(ta, tbI s) D c exp(¡|ta ¡ tb | /l) sin(2p kf1ta) sin(2p kf2tb). (8.2)

The cross-correlation function decayed exponentially, with time constant
25 ms, as a function of the time between spikes (König et al., 1995). The con-
stant c in front of the correlation function was set to 0 (no cross-correlation),
¡1 (signal and noise in counterphase), or 1 (signal in phase with the noise). k
determined the relative timescales of signal and noise correlation oscillation
and was set to 1 for Figure 7a and 10 for Figure 7b. The information from
the pair of cells observed simultaneously is compared with the summed
single-cell information in the �gure.

When the noise correlation between the cells is chosen to oscillate with
the same frequency as the signal correlation does, synergy is obtained when
signal and noise correlation are in counterphase. Conversely, high redun-
dancy is obtained when they are in phase. When instead signal and noise
oscillate on very different timescales, correlations play a much less signi�-
cant role. When response pro�les of different neurons are independent and
little signal correlation is present, weakly stimulus-modulated correlations
do not affect information transmission at all (Oram et al., 1998; Panzeri et al.,
1999). This is important as signal correlation between cortical neurons was
reported to be very small for stimulus sets of increasing complexity (Gawne,
Kjaer, Hertz, & Richmond, 1996; Rolls, Treves, & Tov Âee, 1997; DeAngelis,
Ghose, Ohzawa, & Freeman, 1999), and therefore correlations might be less
important under natural conditions than when using arti�cial and limited
laboratory stimuli.

The neuronal model used in this simulation is certainly far from realistic;
however, the result discussed here is valid beyond the simple models used
for the �gures.We note thatwhencross-correlations are stimulus dependent,
then the third term of equation 4.3 also becomes nonzero, and additional
interactions between response parameters can arise. They can be studied
by specifying the stimulus dependence of correlations and also taking into
account this information component.

Inconclusion, this sectionshows that thecontributionofcross-correlations
to the representation of the external world can be more complex than what
might be expected from naive visual inspection of cross-correlograms. This
reinforces the need for a rigorous information-theoretic analysis of the role
of trial-by-trial correlations in solving complex encoding problems like fea-
ture binding (Singer et al., 1997).
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8.2 Synergy Between Spikes. Another notion of synergy, de�ned for
single cells (as well as populations) and for the full temporal information, is
synergy between spikes. Motivated by the notion that particular sequences
of spikes may have a special role in encoding stimuli, Brenner, Strong,
Koberle, Bialek, and de Ruyter van Steveninck (2000) recently introduced
a synergy measure of this type. In that work, “events” (e.g., single spikes
or pairs of spikes occurring with a given time delay irrespective of whether
there are other spikes in between) are singled out from the whole spike
train; the information carried by occurrence of single events was computed.3

Brenner et al. (2000) considered the synergy to be the information from a
complex event (e.g., a pair of spikes occurring at speci�ed times) minus the
information from each of those individual spikes constituting that pair.

Another way to measure the synergy between spikes that is suggested by
our analysis here is to take into account their contribution to the information
conveyed by the whole spike train. The contribution of single spikes to the
whole spike train information is given by equation 4.2, and, correspondingly
the contribution of pairs of spikes is given by the sum of equations 4.2 and
4.3. Therefore, the extent of synergy between pairs of spikes is simply the
quantity given in equation 4.3 alone. The concept generalizes to higher-
order interactions; “spike” synergy is something that falls naturally out of
the series expansion approach.

It is interesting to note that the introduction of a refractory period has
an accompanying effect on the synergy between spikes, as measured by
the fractional second-order contribution to the overall temporal informa-
tion. Figure 8a shows the effect of the refractory period on the synergy
between spikes. This is shown for the example of a cell whose �ring rate
is modulated by a 40 Hz sinusoid for one stimulus as in the earlier �gures.
The �gure compares a Poisson process with processes augmented with an
absolute refractory period of between 1 and 16 ms, and also with another
process that has a 2 ms absolute refractory period and an exponentially
decaying autocorrelation with time constant 20 ms, re�ecting a relative re-
fractory period. It is apparent that for the Poisson process (in which spikes
are not entirely independent because of the rate modulation), the second-
order contribution is small or negative. For longer refractory periods, there
is an increasing peak in the early period of the response. This effect appears
to involve an interaction between the absolute refractory period and the
time constant of stimulus modulation of the rates; the stimulus modulation
timescale determines the width of the spike synergy peak (see Figure 8b),
whereas the refractory period length determines its height.

3 The de�nition of information carried by the occurrence of a single event is a gen-
eralization of equation 4.2. However, the Brenner et al. (2000) de�nition of information
carried by, for example, single spikes in isolation is different from the contribution of the
occurrence of a single spike in a given trial to the information from the full spike train.
The latter quantity also has terms of higher order.
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It has been noted previously that the temporal correlations introduced
into the spike train by refractoriness can have a bene�cial effect on coding.
This occurs by regularization of the higher �ring-rate parts of the response,
producing a more deterministic relation between stimulus and response
(de Ruyter van Steveninck et al., 1997; Berry & Meister, 1998). Our analysis
con�rms this effect and adds several new facts: that the effect is second
order in time and that it involves interaction between the refractory and
dominant stimulus-induced modulation timescales, such that the width of
the period of increased information is determined by the stimulus frequency
characteristics, whereas the amount of extra information is determined by
the effective duration of refraction.

9 Analysis of Neurophysiological Data

In order to illustrate the speci�c advantages and the type of neurophysio-
logical results that can be obtained with our series expansion method, we
present here an example analysis of two cells recorded from the barrel cortex
of adult normal anesthetized Wistar rats. The two neurons presented were
located in the D2 and C2 barrel column, respectively. Each stimulation con-
sisted of a 100 ms lasting upward de�ection of one of the whiskers. For each
neuron, the stimulus set was composed of its principal whisker and its eight
surrounding whiskers, so that each of the whiskers that was likely to acti-
vate the cells was included in the stimulus set. Fifty to 56 trials per whisker
were available. The time onset of stimulation, as well as spike times, were
recorded with 0.1 ms precision. (See Lebedev et al., 2000, for a complete
description of the experimental methods.) The information about which of
the nine whiskers was stimulated was computed with the series expansion
approach and using brute force estimation from response frequencies. In-
formation from spike counts and spike times was computed. For the latter, a
resolution D t = 10 ms was used. Corrections for the upward bias originating
from limited sampling were applied (see appendix B). The range over which
unbiased information measures could be obtained is discussed below and
in appendix B. Note that the probability scaling assumption was shown to
be satis�ed by both neurons in Figure 2.

Figure 9a shows the spike count information analysis for the �rst neu-
ron. Since the overall mean rate of the neuron across the 100 ms stimulation
is 10 Hz, the series expansion is expected to be very good. Indeed, a compar-

Figure 8: Facing page. Synergy between spikes, measured by the fraction of the
temporal information contained in the second-order terms. (a) Comparison of
a Poisson process with processes augmented with absolute refractory periods.
In one case, a relative refractory period with exponential autocorrelation is also
added (circles). (b) Interaction of a 4 ms refractory period with stimulus-induced
modulation frequency, for three different modulation frequencies.
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ison of the brute force and series spike count information shows that the
two are essentially identical for the whole stimulation time range. Because
the two quantities are (after �nite sampling corrections) unbiased in this
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time range, this is a very compelling veri�cation of the validity of the series
expansion method. In Figure 9b we report the spike times information anal-
ysis for the �rst neuron. It is evident that the brute force estimation of the
full temporal information diverges rapidly after the �rst four to �ve time
bins (i.e., after to 40–50 ms). This is due to failure of corrections for �nite
sampling, as expected by the rule of thumb for sampling corrections (see
appendix B). The spike times series expansion is a close match to the brute
force estimator up to 40 to 50 ms, and no appreciable divergence due to �nite
sampling is visible, again as expected. This illustrates the clear superiority,
in terms of sampling requirements, of the series expansion with respect to
brute force evaluations. The separation of information into components,
obtained using the series expansion, shows that most of the information
is carried by the rate component. However, for this cell spike, correlations
contribute up to approximately 15% of the information in the spike times
case. Note that all of this information in spike correlations is contributed
by the stimulus-independent component. This means that this little correla-
tional information arises not from modulation of the autocorrelogram with
stimulus, but from the interplay of signal and noise correlations. The peak
across time for the spike count information was 0.31 bit; the full temporal
information obtained with 10 ms resolution was of 0.41 bit at time T = 50
ms. This shows that a neuron can transmit appreciable temporal informa-
tion within a fraction of one mean interspike interval. This possibility was
predicted by our mathematical analysis of coding regimes. Finally, it is in-
teresting to note that this neuron in the �rst 10 ms of response carried on
average more than 3 bits per each spike emitted.

Figure 10 reports the information time course for the second neuron. Its
mean rate across 100 ms was 16 Hz. Also in this second case, the informa-
tion for the spike counts obtained with the series expansion coincided with
that obtained by the brute force method, thus con�rming the reliability of
the series expansion. When considering spike times, series expansion and
brute force evaluation are very close up to 40 to 50 ms. After 50 ms, the
brute force evaluation cannot be corrected effectively for �nite sampling,
and thus it starts to diverge. The peak spike count information was 0.13 bit;

Figure 9: Facing page. (a) Time course of the information in the spike counts
for a neuron located in the D2 barrel column of the rat cerebral cortex. The
information obtained with the brute force method (equation 2.2, indicated with
±) is compared to that obtained with the series expansion at second order (C). The
three components of the series expansion information are also presented (rate,
¦; stimulus-independent correlational, ; stimulus-dependent correlational, ?.
(b): Time course of information carried by spike times of the same neuron,
computed with a 10 ms precision. Notation as in a. The “rate” component in
this case refers to the dynamic �ring rate across the time window rather than
anything to do with a spike count code.
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Figure 10: (a) Spike count and (b) spike times information time course for a
second neuron located in the C2 barrel column. Notations as in Figure 9.
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the peak spike timing information was 0.20 bit. As before, signi�cant tem-
poral information is transmitted within one typical interspike interval. The
component analysis indicates that unlike the �rst cell, this second cell trans-
mits information by mean �ring-rate modulations only, and correlations
between spikes do not transmit any information.

The above two cells were shown only for illustrative purposes rather
than to make any general point about the information properties of bar-
rel cortex neurons.4 This illustration shows that (1) the series expansion
method can give reliable and testable results; (2) when used to compute
information in spike times, it has considerable advantages in terms of data
size requirements; and (3) it can effectively quantify the contributions of
different encoding mechanisms to neuronal information transmission.

10 Discussion

We have demonstrated that the MacKay and McCulloch (1952) information
contained in the speci�cation of the times of spike emission of a population
of cells can be broken up into a series of terms, each quantifying the contri-
bution of a different encoding mechanism, just as the information contained
in the spike counts from a population can (Panzeri et al., 1999). Although
it can be applied only to a limited range of time windows, the use of this
series approach has a number of advantages over brute force computation
for both the understanding of the theory of coding with spike trains and the
analysis of neurophysiological data.

A �rst advantage of this approach is that it necessarily compares the con-
tributions of different information-bearing parameters on correct and equal
terms and shows how they combine to yield the full information available
from the spike train. A second advantage of the series expansion method is
that it requires much less data sampling than a brute force approach in order
to obtain unbiased and reliable information measures. This is because the
information is computed by using only the subset of the possible variables
characterizing the spike train that carry the most information in the short
time limit. Therefore, the complexity of the response space is reduced in the
way that preserves the most information. A third interesting feature of the
method present here is that it does not assume that the neuronal response
space is a vector space, as, for example, principal component analysis (Op-
tican & Richmond, 1987) does. Since sensory systems are nonlinear, this is
a property that has to be satis�ed by any method for studying neuronal
information encoding (Victor & Purpura, 1996, 1997). Fourth, the series ex-
pansion approach is a method to quantify the full temporal information

4 A complete study of the informational properties of a large set of barrel cortical
neurons will be the subject of a separate publication (Panzeri, Petersen, Schultz, Lebedev,
& Diamond, 2000).
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that can be extracted from the spike train by an ideal observer and does not
depend on the validity of a stimulus-response model, and is not speci�c
to a particular stimulus decoder. Therefore, it provides information values
against which the performance of encoding and decoding models can be
assessed (Rieke et al., 1996; Borst & Theunissen, 1999).

The observation timescales with which spike trains are studied depend
on the questions being asked. Many authors, particularly those with a per-
spective from the �eld of psychophysics, have examined windows of data
up to several seconds long. The justi�cation is that in certain tasks (Brit-
ten, Shadlen, Newsome, & Movshon, 1992), psychophysical performance
increases up to these timescales, as does the ability to discriminate stimuli
based on counting the spikes of a single cell (as counting for longer allows
noise to be averaged out). The techniques discussed in this article are in-
applicable to such long time windows (although other techniques, such as
direct calculation of the spike count information for a single cell, do apply).
We note that the study of neural coding is often considered as a precursor
to, or partner of, the study of computation or information processing in the
nervous system. To understand the computational architecture of the brain,
it is necessary to understand the nature of the symbols that are processed.
Accepting that single neurons are the primary information processing units
of the brain, these symbols must exist on timescales that are “seen” by single
cells, which may be as low as a membrane time constant, or longer if ad-
ditional integrative processes are enacted. It is neural coding on single-cell
timescales that determines computation and motivates the work reported
here. Since perceptual processes are unlikely to be uniform in time, such a
strategy might also elucidate some of the computations underlying percep-
tion at longer timescales.

The work presented here is relevant not only as a tool for neurophys-
iological data analysis. It also allows analytical studies of the statistical
properties of population spike trains, such as refractoriness, autocorrela-
tion, and timing relationships between cells, to be conducted with regard to
understanding which parts of the full temporal information they contribute
to and which they do not. Here we have used this formalism to relate pre-
cisely the timescale of response parameter variations to transitions between
spike count and temporal encoding regimes; to show that the impact on
information representations of stimulus-independent trial-by-trial correla-
tions depends crucially on their interplay with the signal correlation; and
to show that the neuronal refractory period can lead to synergy between
spikes. A further understanding of how other parameters of biophysical
relevance can be adjusted to maximize encoding capacity can be reached by
the use of the formalism presented here.

One most interesting �nding often reported in experimental studies of
neuronal information transmission is that sensory neurons transmit most of
the information within one mean interspike interval, and single spikes carry
a lot of information (Rieke et al., 1996). Thus, high spike timing precision
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and rate coding may coexist in sensory neuron, as the rate code has to be
evaluated in a short window. This has led some authors to conclude that
under these conditions the distinction between rate and temporal encoding
may become blurred (see Rieke et al., 1996). However, differences between
temporal and rate encoding and rate coding can be de�ned and be present
even under conditions of such rapid processing (Theunissen & Miller, 1995;
Borst & Theunissen, 1999). Our study advances the understanding of the
distinction between temporal and rate encoding when the relevant window
for information transmission is short. In fact, our work explicitly relates
response variations timescales to transitions between coding regimes and
shows that under some conditions, a substantial amount of information can
be encoded purely temporally within a fraction of one interspike interval
(see section 6). Indeed, the example analysis of two neurons in the rat barrel
cortex shows that this is not only a theoretical possibility, but that it can be
realized by sensory neurons.

Shadlen and Newsome (1998) argue that because the interspike interval
in the responses of cortical neurons is highly variable, the rapid information
transmission achieved by the cerebral cortex (i.e., substantial information
being transmitted in one interspike interval or less) must imply redundancy
of signal. Their argument is based on the idea that to obtain reliability in
short timescales, it is necessary to average away the large observed variabil-
ity of individual interspike intervals by replicating the signal through many
similar neurons. In other words, the need for rapid information transmission
should strongly constrain the cortical architecture. Our study demonstrates
precisely the opposite. The fact that the �rst-order temporal information
transmitted by a population is simply the sum of all single-cell contribu-
tions (see equation 4.2) demonstrates that it is not necessary to transmit
many copies of the same signal to ensure rapid and reliable transmission.
If each cell contributes some nonidentical information about the stimuli,
this will sum up in less than one interspike interval, and high population
information rates can be achieved.

We �nally note that DeWeese (1995, 1996) previously reported an elegant
analytical study of the impact of interaction between spikes of information
transmission in single cells. This study made use of a cluster expansion for-
malism derived from statistical mechanics. The results DeWeese obtained
in this way are close to what we obtained in the single-cell case. The only
difference is that in DeWeese’s equations, the summation over time in the
quadratic term of second derivative of the information is restricted to pairs
of time bins different from each other. However, this work reports several
advances with respect to the earlier work of DeWeese. In fact, we computed
the information carried by an ensemble of cells instead of by single cells
only. We separated the information into different components, each re�ect-
ing different encoding mechanisms. We also studied the transition between
spike count and temporal encoding regimes. The power series formalism
makes the conditions under which the series converges transparent; this
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issue is much less clear with a cluster expansion (see, e.g., DeWeese, 1995).
Unlike in DeWeese (1996), corrections for �nite sampling were introduced
here. This last development is essential when using the method for studying
information transmission in real neurons.

In conclusion, a full understanding of the coding properties of a neural
system cannot be achieved simply by computing the total information about
the stimuli contained in its spike trains; rather, it is necessary at the very
least to discover how this total is arrived at from the individual information-
bearing parameters. The results that we have presented here encourage us
to think that this is possible.

Appendix A

In this appendix we show that under the assumptions summarized in sec-
tion 5, the only responses contributing to the transmitted information up to
order k are the spike patterns with up to k spikes in total. Thus, the power
expansion in the short time window length T is related to the expansion in
the total number of spikes emitted by the population. We also compute the
only nonzero response probabilities up to second order, which are the only
ones contributing to the �rst two information derivatives. We give the proof
for �nite temporal precision.

Consider the response to stimulus s. The probability of observing one
spike in the bin centered at ta

i , averaged over all possible patterns of spikes
occurring in other bins, is ra(ta

i I s)D t. Now note that the assumption speci�ed
by equation 3.3 implies that the probability of a single spike, the observation
of any pattern of other spikes, also scales proportionally to D t:

P(ta
i |tb

j ¢ ¢ ¢ t f
kI s) / D t. (A.1)

Third, we use the well-known theorem on compound probabilities to write

the following chain rule for the probability of observing a pattern ta
i t

b
j , . . . , t f

k
of k spikes when stimulus s is presented:

P(ta
i t

b
j , . . . , t f

kI s) D P(ta
i |tb

j , . . . , t f
k I s)P(tb

j |, . . . , t f
k I s), . . . , P(t f

k I s). (A.2)

This means that a probabilityof k spikes isa product of kconditional prob-
abilities of emission of each of the spikes given the presence of other spikes
in the pattern. Since, as proven above, each of the k terms of this product is
proportional to D t, probabilities of k-plets of spikes scale as (D t)k. From this
scaling property, from the de�nition of information, equation 2.1, and from
the logarithm series expansion, equation 4.1, it follows that for the com-
putation of the �rst k information derivatives, only response probabilities
with up to k spikes are needed, and they can be truncated at the kth order
in D t. Responses with more than k spikes do not contribute to the �rst k
information derivatives.
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Finally, we compute the response probabilities of up to two spikes, trun-
cated at the second order in D t. The probability of observing just two spikes
at ta

1, tb
2 is, up to O(D t2), given by the product of P(ta

1 |tb
2I s) (from equation 3.3)

and rb(tb
2I s)D t (the latter factor quantifying at �rst order the probability of

one spike in tb
2):

P(ta
1tb

2I s) D
1
2

ra(ta
1I s)rb(tb

2I s)
h
1 C c ab(ta

1, tb
2I s)

i
(D t)2 C O(D t3). (A.3)

The probability of two spikes is divided by two to prevent overcounting
due to equivalent permutations rather than restrict the sum over events
to nonequivalent permutations, as was done in Panzeri et al. (1999). The
probability P(ta

1I s) of observing just one spike at ta
1 is given, up to order D t2,

by the product of rb(tb
2I s)D t and the probability of not observing any other

spike than that at ta
1:

P(ta
1I s) D ra(ta

1I s)D tP(no spikes but ta
1I s) C O(D t3)

D ra(ta
1I s)D t

0
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2 |ta
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X
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3 |ta
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1

A
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1I s)D t
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X

tb2

rb(tb
2I s)
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1 C c ab(ta

1, tb
2I s)

i
1

A

C O(D t3). (A.4)

The probability of no cells at all �ring, up to D t2, can be obtained by sub-
tracting from 1 all the response probabilities that are nonzero at second
order.

The probability expansion in the in�nite temporal precision limit can be
obtained along the same lines by replacing probabilities with probability
densities and using equation 3.8.

Appendix B

When considering neurophysiological data, the information quantities have
to be evaluated from response probabilities obtained from a limited num-
ber of trials per stimulus, Ns. This induces an upward systematic error, or
bias, in the information measures. The systematic error has to be evaluated
and subtracted in order to obtain unbiased information measures. In this
appendix we brie�y report how the bias is computed and corrected for in
the different information estimation methods.

The bias correction is a simple formula, which is slightly different when
considering the information calculated directly from the Shannon formula
(equations 2.1 and 2.2) by brute force estimation of response frequencies, or
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when considering the information computed by the series expansion5 (see
Panzeri & Treves, 1996; Panzeri et al., 1999):

dIbruteforce D
P

s2S (Rs ¡ 1) ¡ (R ¡ 1)
2N ln 2

I dIseries D
P

s2S (Rs) ¡ R
2N ln 2

, (B.1)

where N is the total number of trials (across all stimuli) and R is the number
of relevant response classes across all stimuli (i.e., the number of different
responses with nonzero probability of being observed). Rs is the number of
relevant response classes to stimulus s (Panzeri & Treves, 1996). It is intuitive
that the number of trials per stimulus Ns should be big when compared to
the number of response classes R in order to get good enough sampling of
conditional responses, and therefore reliable bias correction. When a Bayes
procedure (which takes into account that some response classes may not be
observed because of local undersampling) is used to estimate the number
of relevant bins, reliable bias corrections can be obtained when Ns is equal
to or higher than the number of response classes R. This gives a useful rule
of thumb for evaluating the range in which the bias corrections still work.

For the brute force full temporal information (see equation 2.1), the re-
sponse space is that of all the possible temporal spike patterns, and the num-
ber of possible responses is 2Cd, d D T/D t being the number of time bins in
which the window is digitized. The situation is very different when the in-
formation is computed by the series expansion approach. For the �rst-order
spike times information, R is the number of nonzero bins of the dynamic rate
function, which is at most Cd. For the second-order spike times information,
R is the number of relevant bins in the space of pairs of spike �ring times,
which is at most Cd(d ¡ 1)/2 C C(C ¡ 1)d(d C 1)/4. Therefore the number of
trials needed to correct effectively for the bias grows only linearly when C
or d is increased if the �rst-order term is considered and only quadratically
when the second-order term is also included. Considering that the growth
of the data size required for the brute force evaluation from the Shannon
formula is exponential, there is a clear advantage in terms of data size when
using the series approach developed here. Some simulation examples of
effectiveness of bias removal procedures for the series expansion method
were reported in Schultz and Panzeri (2000).

As an example, when 50 to 55 trials per stimulus are available for infor-
mation analysis of single cells (as in the example reported here), the brute
force computation is unbiased only up to 4 to 5 time bins, and the series
expansion is unbiased up to 9 to 10 time bins. The spike count information

5 Note that the series expansion correction reported below is the leading bias term in
the short time limit only. Note also that the series expansion bias correction slightly differs
from the one for the brute force computation because in the series expansion formalism,
the response class corresponding to zero response always has nonzero probability. This
response class contribution cancels out the ¡1 in the bias for the brute force infromation.
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quantities, of course, require many fewer data than the corresponding spike
times quantities. They are thus well corrected for bias for the whole range
in which the full temporal information measures are reliable.
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